Computational materials science entails the use of computer programmes to solve problems involving materials. Different mathematical models exist for exploring problems at numerous length and time scales, assisting in the understanding of material structure evolution (at various length scales) and how these structures effectively govern material properties. We can select materials for certain uses and design sophisticated materials for new applications using this knowledge. The rise of computing power is allowing for exciting new methods to material characterisation and design. Many materials studies now use computational approaches, which will only become more common as computer power improves in the coming decades. A key, cross-cutting strength is computational prediction of material properties from atomic to microstructural scales. It provides a framework for understanding the precise significance of specific aspects in material synthesis, processing, and attributes, such as composition, surface structure and chemistry, microstructure, defect type, and distribution.
Title : Introducing picotechnology: An exciting extension of nanotechnology
Thomas J Webster, Interstellar Therapeutics, United States
Title : The failure of both einsteins space-time theory and his equivalence principle and their resolution by the uniform scaling method
Robert Buenker, University of Wuppertal, Germany
Title : Material challenges with proton conducting ceramics for intermediate temperature hydrogenation/dehydrogenation applications
Saheli Biswas, Commonwealth Scientific and Industrial Research Organisation, Australia
Title : Porphyrin layers at metal-electrolyte interfaces monitored by EC-STM and CV
Marek Nowicki, University of Wroclaw, Poland
Title : Color control of electrochromes by structural modification
Will Skene, Montreal University, Canada
Title : Make experiments more efficient: Two simple and powerful approaches. Mg2Si growth for photovoltaic and thermoelectric applications
Alexander S Gouralnik , Institute of Automation and Control Processes, Russian Federation
Title : Reconfigurable antenna structures using tunable materials
Nasimuddin, Institute for Infocomm Research, Singapore
Title : (0, 1 and 2) Dimensional hybrid architecture of the synthesized materials leads the smart sensing of the gaseous species at low/room temperature
D R Patil, North Maharashtra University, India
Title : Enhanced grain refinement, precipitates regulation, and improved mechanical properties of cast Al-Li alloy by Ti addition and heat treatment
Lixiong Shao, Shanghai Jiao Tong University, China
Title : Broadband sound attenuation of shape memory polymer with triangular-honeycomb unit cell metamaterial structural design
Musaab Ejaz, Universiti Teknologi PETRONAS (UTP), Malaysia