HYBRID EVENT: You can participate in person at Valencia, Spain or Virtually from your home or work.
Computational Materials Science

Computational materials science entails the use of computer programmes to solve problems involving materials. Different mathematical models exist for exploring problems at numerous length and time scales, assisting in the understanding of material structure evolution (at various length scales) and how these structures effectively govern material properties. We can select materials for certain uses and design sophisticated materials for new applications using this knowledge. The rise of computing power is allowing for exciting new methods to material characterisation and design. Many materials studies now use computational approaches, which will only become more common as computer power improves in the coming decades. A key, cross-cutting strength is computational prediction of material properties from atomic to microstructural scales. It provides a framework for understanding the precise significance of specific aspects in material synthesis, processing, and attributes, such as composition, surface structure and chemistry, microstructure, defect type, and distribution.

  • Integrated computational materials engineering
  • Mesoscale methods
  • Atomistic methods
  • Continuum stimulation
  • Materials Computation
  • Nano-electromechanics and energy
  • Mathematical models
Committee Members
Speaker at Materials Science and Engineering 2023 - Astuty Amrin

Astuty Amrin

Universiti Teknologi, Malaysia
Speaker at Materials Science and Engineering 2023 - Chintakindi Sanjay

Chintakindi Sanjay

King Saud University, Saudi Arabia
Speaker at Materials Science and Engineering 2023 - Zakaria Boumerzoug

Zakaria Boumerzoug

University of Biskra, Algeria
Speaker at Materials Science and Engineering 2023 - Osman Adiguzel

Osman Adiguzel

Firat University, Turkey

Submit your abstract Today

Watsapp